陈舟看着查找到的资料。
虽然过去了一个多世纪,数学这门学科也得到了长足的发展。
但在这23问中,一共得到承认,并全部解决的有17个。
还剩下足足6个问题,并未得到完整的解决。
由此可见,时间并不是解决问题的充分条件,它只是必要因素罢了。
就像费马大定理,可是历经了300多年的沉淀,最终在1995年,才由怀尔斯解决。
陈舟微微有些感慨的看着这些问题后面的论述。
这些问题的存在,其实早已超越了问题本身的意义。
在这些问题的研究过程中,所诞生的新的数学工具,研究方法,甚至比某些问题还要重要。
像“某些数的超越性的证明”这一问题。
早在1929年和1935年就分别被几位数学家独立证明了其正确性。
但是关于超越数理论的研究,却远远未完成。
这一问题的研究,也成为了超越数理论的一部分。
还有“素数分别”的问题。
黎曼猜想、哥德巴赫猜想以及孪生素数问题。
都是尚未解决的问题。
但在解决这些猜想的过程中,无论是得到的三素数定理,还是对筛法的重要改进,都是对极其重要且难得的成果。
握住鼠标,滑动滚轮,陈舟把这23问中尚未解决的6个难题,再次梳理了一遍。
倒不是他打算从这6个问题中,就挑一个作为课题研究了。
而是,他希望从中获得一些方向。
然后,再向这些真正的难题靠近。
而且,系统任务每次都是只指引一个方向,所有的东西都得靠陈舟自己来。
所以,陈舟就打算确立一个系统的课题研究思路。
从课题的选题开始,到之后的每一步。
他打算逐渐养成,或者说形成自己的研究风格。
这也是陈舟经过深思熟虑之后的决定。
毕竟,从上次的任务来看,系统所奖励的经验,最终还是看的课题价值。
那当然要一步步深入咯。
陈舟做完笔记,便又搜索了一些相关文献和类似的内容。
把这些全部做完,陈舟伸了个懒腰。
瞥了眼时间,已经10点多了。
刚奇怪,怎么杨依依没有来催觉消息。
就听到手机震动了一下。
陈舟拿起看了一眼,杨依依发过来的。
开心,该睡觉咯,要乖哦,嘻嘻。
看着消息,陈舟微微一笑,手指快速点击,回了一条。
嗯,那开心的依依,我们睡觉吧……
刚发过去,杨依依就回了过来。
嗯嗯,晚安。
陈舟晚安。
第二天,3月22日,周日。
上午9点进场,9点半考试。
个人赛第三个科目是几何与拓扑。
杨依依考完这个科目,她整个笔试阶段,便结束了。
下午的最后两个科目,她是都没有报的。
对于几何与拓扑的试卷,陈舟倒是眼前一亮。
这试卷出卷人不错,卷面整洁,题目很短。
看着就很舒心嘛……
第一题是关于球面的积的问题。
陈舟抬笔计算,思路清晰,计算严谨。
没花多少时间,便搞定了第一题。
然后是第二题。
三维流形的证明题。
流形在数学中所描述的就是几何形体。
第二题解决,到了第三题。
关于无边界光滑流形和向量场的问题。
没多大难度,陈舟敲定思路后,就把解题过程写